o
e s s

Princess Nora Bmt Abdul Rahman University

‘*?‘a;;w 8 CS111: PROGRAMMING
DY LANGUAGE Il

- Lecture 8(b): Abstract classes & Polymorphism

. Lecture Contents

00 Abstract base classes
1 Concrete classes

01 Polymorphic processing

Dr. Amal Khalifa, 2014

¢ Case Study: Payroll System

A company pays 1ts employees on a weekly
basis. The employees are of four types:
Salaried employees are paid a fixed weekly
salary regardless of the number of hours
worked, hourly employees are paid by the
hour and receive overtime pay (1.e., 1.5
times theilr hourly salary rate) for all
hours worked 1in excess of 40 hours,
commission employees are pald a percentage
of thelr sales and base-salaried commission
employees receive a base salary plus a
percentage of their sales. For the current
pay period, the company has decided to
reward salaried-commission employees by
adding 10% to their base salaries. The
company wants to write a Java application
that performs 1ts payroll calculations
polymorphically.

Employee

SalariedEmployee I CommissionEmployee HourlyEmployee I
BasePlusCommissionEmployee I

Fig. 10.2 | Employee hierarchy UML class diagram.

“ Case Study: Payroll System

dr. Amal Khalifa, 2014

AT

PEx

Concrete Subclasses

Employee

Salaried-
Employee

Hourly-
Employee

Commission-
Employee

BasePlus-
Commission-
Employee

earnings

abstract

weeklySalary

if (hours <= 40)
wage * hours
else if (hours > 40)
{
40 * wage +
(hours - 40) *
wage * 1.5
1

commissionRate *
grossSales

(commissionRate *
grossSales) +
baseSalary

toString

firstName lastName
social security number: SSN

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklysalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage; hours worked: hours

commission employee: firstName lastName
social security number: SSN

gross sales: grossSales;

commission rate: commissionRate

base salaried commission employee:
firstName lastName

social security number: SSN

gross sales: grossSales;

commission rate: commissionRate;

base salary: baseSalary

Fig. 10.3 | Polymorphic interface for the Employee hierarchy classes.

-
A

71

// Fig. 10.9: PayrollSystemTest.java

Array of // Employee hierarchy test program.
references fo public class PayrollSystemTest
the base class {

public static void main(String[] args)
Each reference {

// create subclass objects
SalariedEmployee salariedEmployee =

new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
HourlyEmployee hourlyEmployee =

new HourlyEmployee("Karen", "Price", "222-22-2222", 16.75, 40);
CommissionEmployee commissionEmployee =

new CommissionEmployee(

"Sue", "Jones", "333-33-3333", 10000, .06);
BasePlusCommissionEmployee basePlusCommissionEmployee =

new BasePTusCommissionEmployee(

"Bob", "Lewis'", "444-44-4444", 5000, .04, 300);

is instantiated
as an object of
a concrete
class.

Dynamic
binding =2
different
method calls
according to
actual typell

System.out.printin("Employees processed individually:\n");

System.out.printf("%s\n%s: $%,.2f\n\n",
salariedEmployee, "earned", salariedEmployee.earnings());

WN =00 ONOWNDWN=0OOO~NNONHE WN =

Fig. 10.9 | Employee hierarchy test program. (Part | of 6.)
dr. Amal Khalifa, 2014

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

System.out.printf("%s\n%s: $%,.2f\n\n",

hourlyEmployee, "earned", hourlyEmployee.earnings());
System.out.printf("%s\n%s: $%,.2f\n\n",

commissionEmployee, "earned"”, commissionEmployee.earnings());
System.out.printf("%s\n%s: $%,.2f\n\n",

basePTusCommissionEmployee,

"earned"”, basePlusCommissionEmployee.earnings());

// create four-element Employee array

Does not create
Employee objects—

Employee[] employees = new Employee[4]; <

// initialize array with Employees

just variables that can
refer to objects of
Employee subclasses

Aim each Employee

employees[0] = salariedEmployee; _w
employees[1] = hourlyEmployee;

employees[2] = commissionEmployee;
employees[3] = basePlusCommissionEmployee;

System.out.printin("Employees processed polymorphically:\n");

// generically process each element in array employees
for (Employee currentEmployee : employees)

{

System.out.printin(currentEmployee); // invokes toString —«——

variable at an object of
an Employee subclass

Polymorphically
invokes toString

Fig. 10.9 | Employee hierarchy test program. (Part 2 of 6.)

dr. Amal Khalifa, 2014

48 // determine whether element is a BasePlusCommissionEmployee

49 if (currentEmployee instanceof BasePlusCommissionEmployee) « | Is currentEmployee
50 { a BasleP1lu5—

51 // downcast Employee reference to CommissionEmployee?
52 // BasePlusCommissionEmployee reference

53 BasePTusCommissionEmployee employee = This downcast

54 (BasePlusCommissionEmployee) currentEmployee; «— — |

55 works because

56 employee.setBaseSalary(1.10 * employee.getBaseSalary()); .CurrentEm'ﬂoyee
57 IS a BlaseIlD'Ius-

58 System.out.printf(eSSt E S IeEE
59 "new base salary with 10%% increase is: $%,.2f\n",

60 employee.getBaseSalary());

61 ¥} // end if

62

63 System.out.printf(POl hiall

64 "earned $%,.2f\n\n", currentEmployee.earnings()); - [Folymorp |ca.y

65 Y // end for invokes earnings

66

67 // get type name of each object in employees array

68 for (int j = 0; j < employees.length; j++)

69 System.out.printf("Employee %d is a %s\n", j,

70 employees[j].getClass().getName()); = Every object in Java knows its own type
71 } // end main

72 1} // end class PayrollSystemTest

Fig. 10.9 | Employee hierarchy test program. (Part 3 of 6.)

8 dr. Amal Khalifa, 2014

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

earned: $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: $10,000.00; commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00
earned: $500.00

Fig. 10.9 | Employee hierarchy test program. (Part 4 of 6.)

dr. Amal Khalifa, 2014

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: $10,000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00
new base salary with 10% increase 1is: $330.00

earned $530.00

Fig. 10.9 | Employee hierarchy test program. (Part 5 of 6.)

10

dr. Amal Khalifa, 2014

Employee
Employee
Employee
Employee

wMN = O

is
is
1s
1s

a SalariedEmployee

a HourlyEmployee

a CommissionEmployee

a BasePlusCommissionEmployee

Fig. 10.9 | Employee hierarchy test program. (Part 6 of 6.)

11

dr. Amal Khalifa, 2014

. Demonstrating Polymorphic

<" Behavior
12 |

o Asuperclass object cannot be treated as a subclass object,
because a superclass object Is ot an object of any of its
subclasses.

o The /s-arelationship applies only up the hierarchy from a
subclass to its direct (and indirect) superclasses, and not
down the hierarchy:.

o The Java compiler does allow the assignment of a
superclass reference to a subclass variable if you explicitly
cast the superclass reference to the subclass type

- Atechnique known as downcasting that enables a program to
Invoke subclass methods that are not in the superclass.

dr. Amal Khalifa, 2014

Common Programming Error 10.3
Assigning a superclass variable to a subclass variable

(without an explicit cast) is a compilation error.

Common Programming Error 10.4

When downcasting an object, a ClassCastExcep-
tion occurs if at execution time the object does not have
an is-a relationship with the type specified in the cast op-
erator. A reference can be cast only to its own type or to

the type of one of its superclasses.

“ Programming Pitfalls

dr. Amal Khalifa, 2014

B
Y 1@@ N\
\\00‘0‘

' Class Information

n—

0 Eve

ry object in Java knows its own class and can

access this information through the getClass
method, which all classes inherit from class

Ob]

ect.

- The getClass method returns an object of type

C

lass (from package java. Tang), which contains

information about the object’s type, including its class
Name.

- The result of the getClass call is used to invoke

getName to get the object’s class name.

dr. Amal Khalifa, 2014

' Abstract Classes and Methods

n—

o Programmers often write client code that uses only
abstract superclass types to reduce client code’s
dependencies on a range of subclass types.
= You can write a method with a parameter of an abstract

superclass type.

- When called, such a method can receive an object of
any concrete class that directly or indirectly extends
the superclass specified as the parameter’s type.

R
L
AT 2N
P &x @
00"

dr. Amal Khalifa, 2014

T
_.' N
\\00‘0‘

¥ Polymorphism Examples (1)

n—
o Example: Suppose we create a program that simulates

the movement
biological stuc

of several types of animals for a
y. Classes Fish, Frog and B1rd

represent the t
Investigation.

nree types of animals under

- Each class extends superclass Animal, which contains a
method move and maintains an animal’s current location as
x-y coordinates. Each subclass implements method move.

- A program maintains an Animal array containing
references to objects of the various Animal subclasses. To
simulate the animals’ movements, the program sends each

object the same message once per second—namely, move.

dr. Amal Khalifa, 2014

&& Polymorphism Examples (1)
B
o Each specific type of Animal responds to a move
message In a unigue way:
- a F1sh might swim three feet
- a Frog might jump five feet
- a B1rd might fly ten feet.
o The program issues the same message (i.e., move) to each

animal object, but each object knows how to modify its x-y
coordinates appropriately for its specific type of movement.

0 Relying on each object to know how to “do the right thing”
In response to the same method call Is the key concept of
polymorphism.
0 The same message sent to a variety of objects has “many
~ forms” of results—hence the term polymorphism.

dr. Amal Khalifa, 2014

R
L
5PN
L
Ry
000"

Polymorphism Examples (2)
n—

o Example: Quadrilaterals

- If Rectangle is derived from Quadri lateral, thena
Rectang]le object is a more specific version of a
Quadrilateral.

- Any operation that can be performed on a Quadrilateral can
also be performed on a Rectangle.

= These operations can also be performed on other
Quadrilaterals, such as Squares, Parallelograms and
Trapezoids.

= Polymorphism occurs when a program invokes a method through a
superclass Quadri lateral variable—at execution time, the
correct subclass version of the method is called, based on the type
of the reference stored in the superclass variable.

dr. Amal Khalifa, 2014

' Benefits of Polymorphism

n—

o With polymorphism, we can design and implement
systems that are easily extensible

= New classes can be added with little or no modification
to the general portions of the program, as long as the
new classes are part of the inheritance hierarchy that
the program processes generically.

- The only parts of a program that must be altered to
accommodate new classes are those that require direct
knowledge of the new classes that we add to the
hierarchy.

e
7
Y 1@@ N\
\\00‘0‘

dr. Amal Khalifa, 2014

&S f1nal Methods and Classes

m—

o A final method in a superclass cannot be
overridden in a subclass.

- Methods that are declared private are implicitly
final, because it’s not possible to override them in a

subclass.

- Methods that are declared static are implicitly
final.

- A final method’s declaration can never change, so
all subclasses use the same method implementation,
and calls to f1nal methods are resolved at compile
time—this is known as static binding.

dr. Amal Khalifa, 2014

R
B
g 1&@ N\
P &x @
00"

¥ f1nal Methods and Classes (Cont.)

“—

o A final class cannot be a superclass (i.e., a class
cannot extend a final class).

- All methods ina final class are implicitly final.

0 Class Stringis an example of a final class.

- If you were allowed to create a subclass of String,
objects of that subclass could be used wherever Strings

are expected.

- Since class String cannot be extended, programs that use
Strings can rely on the functionality of String objects
as specified in the Java API.

- Making the class T1nal also prevents programmers from
creating subclasses that might bypass security restrictions.

dr. Amal Khalifa, 2014

Common Programming Error 10.5
Attempting to declare a subclass of a final class is a
comptlation error.

Software Engineering Observation 10.6

In the Java API, the vast majority of classes are not
declared final. This enables inheritance and
polymorphism. However, in some cases, it’s important to
declare classes T1nal—typically for security reasons.

n Programming Pitfalls

dr. Amal Khalifa, 2014

N
I

Bt
EN

Working on Chapter 10.....

dr. Amal Khalifa, 2014

