
CS111: PROGRAMMING

LANGUAGE II

Lecture 8(b): Abstract classes & Polymorphism Computer Science

Department

1

Lecture Contents

Dr. Amal Khalifa, 2014

 Abstract base classes

 Concrete classes

 Polymorphic processing

2

Case Study: Payroll System
3

A company pays its employees on a weekly
basis. The employees are of four types:
Salaried employees are paid a fixed weekly
salary regardless of the number of hours
worked, hourly employees are paid by the
hour and receive overtime pay (i.e., 1.5
times their hourly salary rate) for all
hours worked in excess of 40 hours,
commission employees are paid a percentage
of their sales and base-salaried commission
employees receive a base salary plus a
percentage of their sales. For the current
pay period, the company has decided to
reward salaried-commission employees by
adding 10% to their base salaries. The
company wants to write a Java application
that performs its payroll calculations
polymorphically.

Case Study: Payroll System 4

dr. Amal Khalifa, 2014

Concrete Subclasses

5

Polymorphic Processing

dr. Amal Khalifa, 2014

6

Array of
references to
the base class

Each reference
is instantiated
as an object of
a concrete
class.

Dynamic
binding 
different
method calls
according to
actual type!!

dr. Amal Khalifa, 2014 7

dr. Amal Khalifa, 2014 8

dr. Amal Khalifa, 2014 9

dr. Amal Khalifa, 2014 10

dr. Amal Khalifa, 2014 11

Demonstrating Polymorphic

Behavior

 A superclass object cannot be treated as a subclass object,

because a superclass object is not an object of any of its

subclasses.

 The is-a relationship applies only up the hierarchy from a

subclass to its direct (and indirect) superclasses, and not

down the hierarchy.

 The Java compiler does allow the assignment of a

superclass reference to a subclass variable if you explicitly

cast the superclass reference to the subclass type

 A technique known as downcasting that enables a program to

invoke subclass methods that are not in the superclass.

12

dr. Amal Khalifa, 2014

Programming Pitfalls 13

dr. Amal Khalifa, 2014

Class Information

 Every object in Java knows its own class and can

access this information through the getClass
method, which all classes inherit from class

Object.

 The getClass method returns an object of type

Class (from package java.lang), which contains

information about the object’s type, including its class

name.

 The result of the getClass call is used to invoke

getName to get the object’s class name.

14

dr. Amal Khalifa, 2014

Abstract Classes and Methods

 Programmers often write client code that uses only

abstract superclass types to reduce client code’s

dependencies on a range of subclass types.

 You can write a method with a parameter of an abstract

superclass type.

 When called, such a method can receive an object of

any concrete class that directly or indirectly extends

the superclass specified as the parameter’s type.

15

dr. Amal Khalifa, 2014

Polymorphism Examples (1)

 Example: Suppose we create a program that simulates
the movement of several types of animals for a
biological study. Classes Fish, Frog and Bird
represent the three types of animals under
investigation.

 Each class extends superclass Animal, which contains a
method move and maintains an animal’s current location as
x-y coordinates. Each subclass implements method move.

 A program maintains an Animal array containing
references to objects of the various Animal subclasses. To
simulate the animals’ movements, the program sends each
object the same message once per second—namely, move.

16

dr. Amal Khalifa, 2014

Polymorphism Examples (1)

 Each specific type of Animal responds to a move
message in a unique way:
 a Fish might swim three feet

 a Frog might jump five feet

 a Bird might fly ten feet.

 The program issues the same message (i.e., move) to each
animal object, but each object knows how to modify its x-y
coordinates appropriately for its specific type of movement.

 Relying on each object to know how to “do the right thing”
in response to the same method call is the key concept of
polymorphism.

 The same message sent to a variety of objects has “many
forms” of results—hence the term polymorphism.

17

dr. Amal Khalifa, 2014

Polymorphism Examples (2)

 Example: Quadrilaterals

 If Rectangle is derived from Quadrilateral, then a
Rectangle object is a more specific version of a
Quadrilateral.

 Any operation that can be performed on a Quadrilateral can
also be performed on a Rectangle.

 These operations can also be performed on other
Quadrilaterals, such as Squares, Parallelograms and
Trapezoids.

 Polymorphism occurs when a program invokes a method through a
superclass Quadrilateral variable—at execution time, the
correct subclass version of the method is called, based on the type
of the reference stored in the superclass variable.

18

dr. Amal Khalifa, 2014

Benefits of Polymorphism

 With polymorphism, we can design and implement

systems that are easily extensible

 New classes can be added with little or no modification

to the general portions of the program, as long as the

new classes are part of the inheritance hierarchy that

the program processes generically.

 The only parts of a program that must be altered to

accommodate new classes are those that require direct

knowledge of the new classes that we add to the

hierarchy.

19

dr. Amal Khalifa, 2014

final Methods and Classes

 A final method in a superclass cannot be
overridden in a subclass.

 Methods that are declared private are implicitly
final, because it’s not possible to override them in a
subclass.

 Methods that are declared static are implicitly
final.

 A final method’s declaration can never change, so
all subclasses use the same method implementation,
and calls to final methods are resolved at compile
time—this is known as static binding.

20

dr. Amal Khalifa, 2014

final Methods and Classes (Cont.)

 A final class cannot be a superclass (i.e., a class
cannot extend a final class).
 All methods in a final class are implicitly final.

 Class String is an example of a final class.
 If you were allowed to create a subclass of String,

objects of that subclass could be used wherever Strings
are expected.

 Since class String cannot be extended, programs that use
Strings can rely on the functionality of String objects
as specified in the Java API.

 Making the class final also prevents programmers from
creating subclasses that might bypass security restrictions.

21

dr. Amal Khalifa, 2014

Programming Pitfalls 22

dr. Amal Khalifa, 2014

Working on Chapter 10…..

That’s all for today…..

dr. Amal Khalifa, 2014

23

